skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Guo, Bin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Diameter estimates for K\"ahler metrics are established which require only an entropy bound and no lower bound on the Ricci curvature. The proof builds on recent PDE techniques for $$L^\infty$$ estimates for the Monge-Amp\`ere equation, with a key improvement allowing degeneracies of the volume form of codimension strictly greater than one. As a consequence, diameter bounds are obtained for long-time existence of the K\"ahler-Ricci flow and finite-time solutions when the K\"ahler class is big, as well as for special vibrations of Calabi-Yau manifolds. 
    more » « less
  2. We continue our work on the linear theory for equations with conical singularities. We derive interior Schauder estimates for linear elliptic and parabolic equations with a background Kähler metric of conical singularities along a divisor of simple normal crossings. As an application, we prove the short-time existence of the conical Kähler–Ricci flow with conical singularities along a divisor with simple normal crossings. 
    more » « less
  3. Abstract Let 𝑋 be a Kähler manifold with semiample canonical bundle K X K_{X}.It is proved in [W. Jian, Y. Shi and J. Song, A remark on constant scalar curvature Kähler metrics on minimal models,Proc. Amer. Math. Soc.147(2019), 8, 3507–3513] that, for any Kähler class 𝛾, there exists δ > 0 \delta>0such that, for all t ( 0 , δ ) t\in(0,\delta), there exists a unique cscK metric g t g_{t}in K X + t γ K_{X}+t\gamma.In this paper, we prove that { ( X , g t ) } t ( 0 , δ ) \{(X,g_{t})\}_{t\in(0,\delta)}have uniformly bounded Kähler potentials, volume forms and diameters.As a consequence, these metric spaces are pre-compact in the Gromov–Hausdorff sense. 
    more » « less
    Free, publicly-accessible full text available January 8, 2026